\(\int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx\) [327]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 77 \[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

1/3*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2+1/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3317, 3900, 21, 3856, 2720} \[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[In]

Int[1/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (Sec[c + d*x]^(3/2)*Sin[c + d*x]
)/(3*d*(a + a*Sec[c + d*x])^2)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3900

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*d*Co
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] - Dist[d/(a*b*(2*m + 1)), Int
[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*(a*(n - 1) - b*(m + n)*Csc[e + f*x]), x], x] /; FreeQ[{
a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx \\ & = \frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}+\frac {1}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2} \\ & = \frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \sqrt {\sec (c+d x)} \, dx}{6 a^2} \\ & = \frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2} \\ & = \frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.27 \[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (4 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )}{3 a^2 d (1+\cos (c+d x))^2} \]

[In]

Integrate[1/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(4*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - Sin[
(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(187\) vs. \(2(93)=186\).

Time = 3.28 (sec) , antiderivative size = 188, normalized size of antiderivative = 2.44

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(188\)

[In]

int(1/(a+cos(d*x+c)*a)^2/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1
/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+2*cos(1/2*d*x+1/2*c)^4-3*cos(1/2*d
*x+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.95 \[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {{\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/6*((-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c
) + I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4
, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d
*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {\int \frac {1}{\cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a^{2}} \]

[In]

integrate(1/(a+a*cos(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/(cos(c + d*x)**2*sqrt(sec(c + d*x)) + 2*cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x)/a
**2

Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2), x)